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The gravitational mass defect AM =nm, — M of neutron configurations has been investigated. Here M is
the mass of the star, n is the number of neutrons it contains, and my is the neutron mass. It is shown that
in the case of central densities p(0) exceeding nuclear density by an order of magnitude AM exhibits anom-
alous behavior (according to Einstein’s gravitational theory). The anomaly consists in that with increase in
p(0) the mass defect decreases and, in the case of central baryon densities exceeding 10% cm™3, becomes
negative. This phenomenon is caused by the severe disruption of additivity of internal energy in an intense
gravity field, where nonlinear effects are extremely important. In Newton's theory of gravitation AM is
positive for all densities. Baryon stars with a negative mass defect have a colossal reserve of internal en-
ergy. This energy is of the order of the proper energy of the star itself,

1. The existence of baryon configurations with an anomalous (negative) mass defect was predicted in [1]. The es-
sence of the anomaly is that the mass of a superdense body is greater than the sum of the rest masses of the baryons it
contains. In the study mentioned we emphasized the importance of such stellar configurations for astrophysics, but no
detailed investigation was made. The same subject was later discussed by Zel'dovich [2]. He demonstrated that M <
< fnmy, where M is the observed mass of the star, n is the number of neutrons in it, mp is the neutron mass, '~

= 1.5 ]/ g ”U?)_, R is the star radius, and gy, is a component of the metric tensor. This estimate of the upper limit of
mass M does not exclude the possibility of the existence of equilibrium configurations with mass M > nmp. This article
offers a more detailed analysis of the problem.

In the case of spherical baryon stars the gravitational mass defect is

R
NIV L. (i yee— .
M= 1625 Ve, (r)—1e(r) riar, 1.1)
0
where p(r) is the proper energy density, R is the coordinate radius of the star, grr () is the radial component of the metric
tensor for the Schwarzschild internal solution. In essence, (1. 1) represents the difference of the masses of the configura-
tion with and without taking into account the gravitational interaction (characteristic mass); therefore. in all cases SM >
> 0 (everywhere gy > 1). The packing factor SM/M, where M is the observed star mass, was computed in [1]. It was
found to attain fairly large values (see Table 1 in [1]). In the case of configurations consisting of an ideal baryon gas, the
packing factor varies from several percent to 20% for the densest configuration, and in the case of models with a specific

variant of a real gas it may even reach 55%.

In this article we shall not be concerned with the mass defect (1. 1), but with some other value defined by the rela-
tion

AM=mn—M, (1.2)

where n is the number of baryons in the star, m is the sum of the rest masses of a proton and an electron, and M is the ob-
served star mass. Henceforth expression (1. 2) will be called the absolute gravitational mass defect. It is this value that is
of particular interest to astrophysicists, Note that, in contrast to (1. 2), the value of the mass defect (1. 1) is to some de~
gree dependent on the selection of the frame of reference and therefore is not an invariant characteristic of the star, Ac-
tually, (1.1) does not change except in transformations of the type x'* = f*(x"), (a, =1, 2, 3) or x'° = f9(x9),
whereas (1. 2) is invariant relative to any transformations of the coordinates and time.

Obviously, for ordinary celestial bodies in all cases AM > 0. The computations of baryon configurations have dem-
onstrated [1, 4, 11] that when central densities rise above a certain value p;(0) the absolute mass defect changes sign —
it becomes negative. The value of p(0) depends on the form of the equation of state for the baryon gas used in the compu-
tations. In models with a real baryon gas p;(0) has a lesser value than in models with an ideal gas. This can be attributed
to the fact that in the case of a real gas, at densities greater than nuclear, an important role is played by the nuclear
forces of repulsion between baryons. Naturally, the forces of repulsion facilitate the appearance of the considered effect.
It follows that the values (1. 1) and (1. 2) of gravitational mass defects for models with a real gas are not entirely correct,
because in this case they are determined not only by gravitation but also by the effect of nuclear forces (attraction and
repulsion). In order to exclude the influence of nuclear forces on the absolute mass defect and investigate the phenomenon



in purer form, in what follows we will be concerned only with models of superdense stars consisting of an ideal baryon
gas. Then (1.2) actually will represent the absolute gravitational mass defect.

2. In[1, 4 11]the object was not to compute the mass defect. This was determined incidentally after computa-
tion of the masses of the configurations and the number of baryons in them. The number of baryons was computed graph-
ically correct to the third decimal place. For this reason the accuracy of the values AM was naturally not greater than
two decimal places. Special computations of the mass defect have again been made in order to obtain more precise re-
sults. The presence of hyperons and interaction between baryons were disregarded, in order to avoid complications un-
related to the considered problem. The computations of neutron configurations were made on electronic computers at
the Joint Computation Center of the Academy of Sciences of the Armenian SSR and Erevan State University.

When we use Einstein's gravitational theory as a point of departure, configurations consisting of an ideal neutron
gas are defined by the following system of equations [3, 10
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Here r is a radial coordinate, u(r) is the "mass" in a sphere with radius r, n is the number of neutrons in the star, R is the
coordinate radius of the star (determined from the condition t(r) = 0), u®R) = M is the star mass, A = mla-lcs/ 3m%h3) is a con-
stant, my is the neutron mass, and, finally,

t = tarsh(p,/m.c), - (2.2)

where pp = (31r2)1/ 3hN1/ 3 is the limiting momentum of neutrons, and N(r) is the neutron density. In equations (2. 1) a sys-
tem of units is used in which the speed of light and the gravitational constant are equal to unity ¢ =k =1 and Ky =mpc®/
/(32r%h3) = 1/4r. In these units A = 1, 174 X 10%°.

As the initial conditions it is necessary to assign values of the functions u(r) and t(r) at the center of the configura-
tions. We have

u(0)=0; £(0)=0. (2. 3)
In this case each specific value of the parameter t(0) will correspond to a particular neutron configuration.

Neutron configurations were also computed for the case when Newton 's gravitational law is used as the point of de-
parture. In this case we knowingly admitted a certain inconsistency, extending our computations to include configurations
consisting of a relativistic neutron gas. However, in this case we had a definite purpose in mind: comparison of the exact
and approximate computations in order to clarify the role of relativism of the baryon gas and the curvature of space and
thereby determine the cause of the anomaly in the absolute gravitational mass defect. When Newton's gravitational law
is used, the parameters of the neutron configurations are determined from the equations
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Here the first equation defines the star mass (we recall that the mass density p = (sh t—t)/4m, without taking into account
the gravitational interaction between stars). For ordinary stars u(R) coincides with great accuracy with the observed mass.
In the case of neutron configurations, where the mass defect is comparable to the mass, the value of u@R) differs appreci-
ably from the latter. The second equation was derived from the condition of equality between the pressure gradient and
Newtonian attraction. In the last relation M is the true star mass. It is defined as follows:

p(r) ridr, (2.5)

R
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where p is the mass density, and ¢(r) is the gravity potential at distance r (we recall that ¢ = k = 1). It is easy to show that

R
¢ (r)=— LAl 4w g‘ p(r)rdr. (2. 6)
,

¥
r

After substituting (2. 6) into (2. 5) and making a number of simple transformations, we arrive at the last relation of sys-
tem (2. 4). As before, the initial data for (2. 4) are determined by conditions (2. 3).

The results of numerical computations of the most
important parameters of the neutron configurations are
given in the table. We are particularly interested here in

014 T T T T T

012 the gravitational packing factor
AM My —M
e = 20 2 M = nmy,. (2.7
0.10 Mg Mo
The values of the physical quantities having dimensional-
0.08 ity are given in the table in units c =k = 1, Ky = 1/4m.
b 3. The tabulated data cannot give a graphic idea of
0 the dependence of the characteristics of the configurations
06 on the number of baryons that they contain or on the den-
sity at the center, Therefore we also present curves of
some of the most important parameters. Figures 1 and 2
0.04 .
show the dependence between the mass of the configura-
tions and the number of baryons that they contain on val-
ues of the parameter tan~1t(0), where t(0) is determined
0.02 p

by the neutron density at the center N(0) according to for-
mula (2. 2). Note the surprising similarity of the curves

0 ' . ’ ' : for the mass and number of neutrons. Figures 3 and 4 show
0.4 06 08 . 10 12 14 772 curves of the packing factor AM/M,. The captions for the
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Fig. 1. Dependence of the mass of neutron configura- 06 |
“tions on the parameter tan” ! t(0)according toEinstein's '
and Newton''s gravitational theories (lower and upper
curves, respectively). The parameter t(0) is related to 14r 7]
the central density by relation (2. 2).
12+ -
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Fig. 2. (Right) Dependence of the number of neutrons in = 08|
neutron stars on the parameter tan”! ¢(0) according to Ein-
stein’'s and Newton's gravitational theories (lower and up- 16k
per curves, respectively). ' '
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figures give a sufficient idea of the significance of the curves and therefore no detailed discussion of them is required.
We shall note only a few common and important aspects of the relations represented in the figures.
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Fig. 3. Dependence of the packing factor for neu-
tron configurations on the parameter tan~'t(0) ac-
cording to Einstein's gravitational theory. The pack-

ing factor is defined in (2. 7).

a) Although the results of computations of the parameters
of neutron stars on the basis of Newton's and Einstein s gravita-
tional theories reveal an appreciable quantitative difference,
nevertheless, in some most important respects there is good
qualitative agreement. For example, Newton's theory of the
mass, radius, and number of baryons in a star gives the correct
orders of magnitude. Moreover, the curves for these parame-
ters [e. g., for M(x) and n(x), where x = tan'lt(O)] are quite
similar.

b) According to both theories, all the parameters of the
configurations are single-valued functions of the central den-
sity N(0) [or, what is equivalent, the parameter t(0)]. The op-
posite assertion is, in general, untrue. In certain regions the
same value of some of the star parameters, such as mass, cor-
respond to two (or even more) values of the central density
(this is discussed in [1, 3, 4, 10]).

¢) According to Einstein's gravitational theory, the
curves of the dependence of the star parameters on x have a
number of maxima and minima. Figures 1, 2, and 3 clearly
show two maxima and one minimum for t(0) = 3, 34, 12. 35,
and 8. 24 (N(0) = 3.0 - 10%, 4.84 - 10%, and 2.1 - 10*cm™3),
However, beyond the latter maximum at x = 1, 49 there are
many extrema not shown in the figures. When x > 1.5 the
curves, oscillating (with a strongly damped amplitude), tend
to a definite limit as the density at the center tends to infin-
ity. These oscillations of the curves have been investigated in
[5] for the case of relativistic densities.

d) In the case of Newtonian models, the absolute gravi-
tational mass defect for all possible static configurations has a
positive value. As can be seen from the last column of the ta-
ble, the packing coefficient is in all cases an increasing func-

tion of the central density, with the exception of the region of extraordinarily high central densities (see the next to last
line of the table for t(0) ~ 12), where a conspicuous minimum is recorded.
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Fig. 4. Dependence of packing factor for neutron configurations on the total
number of neutrons they contain. The figures on the curve indicate the corre-
sponding values of the parameter t(0) for the points denoted by black dots.



In the case of relativistic models, the gravitational packing factor exhibits anomalous behavior (see Fig. 3). At
first, it increases with increase in density, atx = 1.27 (t(0) = 3. 34, N(0)=3 . 1039cm'3) it attains a maximum and then
begins to decrease.

When x > 1, 36 (t(0) > 4. 67, N(0) > 1. 12 - 10*%m™3) the packing factor becomes negative. At the point x = 1. 45
(t(0) = 8.2, N(0) =2+ 10%cm™) there is a deep minimum, approximately equal to —0. 1; then the packing factor, os-
cillating with a small and strongly damping amplitude and continuing to remain negative as p(0) = «, tends to a limit
of —0. 069.

e) The curve of the dependence of the packing factor on the number of neutrons in a star AM/M, = f@) has an in-
teresting shape (Fig. 4). The figures associated with the black dots on the curve denote the corresponding values of the
parameter t(0). Note that at the points where t(0) = 3, 8, 12, etc. the slope has discontinuities. The existence of these
discontinuities becomes obvious when we note that before and after these points the derivative f'(n)has the same (in this
case positive) sign. This behavior of the M(n) curve was commented on in [2]. Taking into account the fact that [2]:

am ( 2 M N
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dn R

for the derivative of the function AM/M, we find

d <AM > M, [ M, < 9M \'
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This expression cannot become equal to infinity; moreover, by using the data given in the table we can confirm that in
fact it always has a positive sign. Beyond the point t(0) = 12 the function f(n) also oscillates, but due to the close spac-
ing of the zigzags and the rapid decay of amplitude it is difficult to trace this oscillation.
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Fig. 5. Dependence of the function W(r) ==}/ = g4s(r) &,(r) on radial dis-
tance; goo(r) and gy)(r) are the temporal and radial components of the met-
ric tensor. The distances are measured in units ¢ =k = 1 and K, = 1/4r. The
values of the function ¥(r) give some idea of the degree of deviation from ad-
ditivity of the internal energy of the star.

The anomalous behavior of the mass defect will now be discussed in greater detail. We have seen that with respect
to mass defect Newton's and Einstein’s gravitational theories give results which are both qualitatively and quantitatively
different. This comparison obviously indicates that here an important role is played by the curvature of space, that is,
an effect of the general theory of relativity is involved.

It follows from the condition of equilibrium along the radius of a star that

Eo(r)V = oo (Fi=1i1a (1 — 2 M/R)" < m,, 3. 2)

where Ep (r) is the limiting energy of neutrons at distance r, g,, is the temporal component of the metric tensor and M
and R are the star mass and radius, respectively. Note that, in contrast to heated stars, in superdense cold bodies a sharp
boundary exists. Thus, in the case of neutron configurations the radius is determined from the condition Ej(r) = mp, that
is, the surface of the body is located where the Fermi limit intersects the wall of the "gravitational potential well. " It



can be seen from (3. 2) that the highest Fermi level lies in the potential well. This means that the individual particles
in the star form a bound state. and therefore they cannot escape it. On the other hand, computations show that for some
of the densest configurations

M > D) npmy . 3. 3)
k
How can these two facts be reconciled? Actually, inequalities (3. 2) and (3. 3) are not contradictory if we consider
that the total internal energy of the star is not equal to the sum of the energies (kinetic, potential) of the particles of
' which it consists,

If the internal energy possessed the property of additivity, then for the mass we would have

R
M, =4 S‘\F(r)p(r)rzdr<nm,,, 3.9
0
where n is the number of neutrons in the star and
W (r) =V —gu(r) g, (). 3.5)
On the other hand, according to the first equation of system (2. 1), the observed mass of the star is
R
M=4= j p(r)yridr. (8. 6)

0

A comparison of (8. 4) and (3. 6) shows that the energy does not possess the property of additivity. The range of variation
of ¥ will serve as a measure of its deviation. Fig. 5 shows curves of this function for configurations with t(0) = 4, 5, 6,
7. and «. They are similar to —gg, (@) curves (see Fig. 4 in [1]). ¥ has a minimum at the center; with increase in r it
increases monotonically and at the surface differs little from unity. In the case of rigorous adherence to additivity we
would have ¥ = 1, and the maximum deviation will occur when ¥ = 0, As the parameter t(0) increases, ¥(r) in the cen-
tral region decreases. Thus, the greatest deviation from additivity is associated with the central part.

An idea of the region of the star with which negative mass defect is associated is most graphically conveyed by
Fig. 6, which shows curves of the function

) N\ Ve -1/ ' .
b (r):[l — (l _ 2u(n) P () (1 — 2—-”—(—i)> N(r) r¥ 3.7
r myN(r) r ’
where N(r) is neutron density. The integral of this function determines the mass defect
R
AM =4=m, 5 ® (r)dr. (3. 8)

0

For small r the function &(r) is negative; it has one minimum and one maximum, and vanishes at the center and
at-the surface. With increase in t(0) there is an increase in the role of the area situated below the x-axis, and when
t(0) > 4. 7 the algebraic sum of the areas enclosed by the ®(r) curve and the x-axis becomes negative.

We therefore conclude that the mass defect anomaly was caused by a catastrophic deviation from additivity of the
internal energy due to warping of the spatial metric in the corresponding baryon configurations. In these configurations
and in the Newtonian approximation the deviation from additivity (here the kinetic energy is additive and the potential
energy is not) is strong, but inadequate for a change in the sign of the mass defect. In fact, from the virial theorem it
follows [13] that

2 \
—AM:E mk02<mﬁk‘c -—1)>O 3.9)
. k kR

Note that for proof of (8. 9) the assumption of periodicity or quasi-periodic\ity of motion of the particles is not mandatory.

4. We now turn again to Fig. 4. Obviously, the configurations corresponding to the lower branch of the AM/M, =
= f(n) curve when 3 < t(0) < 4. 67 are unstable in relation to the transitions to the upper branch, where the mass defect
exhibits normal behavior. However, configurations with t(0) > 4. 67, having a negative absolute mass defect, are un-
stable not only in relation to transition to the upper branch, but also in relation to decay into a diffuse state. Since the



mass defect is several percent of the mass of the star itself, an improbably large energy will be released in these transi-
tions. The energy associated with one gram of star matter is an order of magnitude greater than the corresponding energy
released in thermonuclear reactions in the combustion of hydrogen. It is important to note that the binding energy of
each particle in a star is negative, so that the particles cannot escape individually to infinity. The escape of a certain
number of baryons from a star requires the addition of supplementary energy to the remaining configuration from the out-
side. For this reason it cannot occur spontaneously. This means that transition of the system to a more stable state can
occur only under the influence of very great perturbations. In this case expansion will occur, accompanied by heating

of the celestial body. The corresponding transition will have the character of a cosmic explosion. These arguments con-
cerning the fate of baryon configurations with an anomalous absolute mass defect were first presented in [1].

¢lr;

Fig. 6. The distance from the center of the star is plotted along the x-axis in
the units used in this paper. Values of the function &(r) (Einstein's theory) are
plotted along the y-axis. The figures on the curves indicate the values of the
parameter t(0) for corresponding configurations. Along the y-axis the scale dif-
fers: for t(0) =2, 3, 5, and 7 the units used are a, 2a, 5a, and 10a, respec-
tively, where a is a known constant number.

We feel that configurations with an anomalous value of the absolute mass defect (we refer to the entire branch of
the curve with t(0) > 3) are of some importance to cosmogony.

According to one modern cosmogonic concept [8, 9], stars, different star groups, and the interstellar gas are formed
from certain superdense prestellar bodies by the eruption of various quantities of matter.

In order of magnitude the mass of the prestellar body must be greater than the mass of a star, whereas above we dis-
cussed static celestial bodies with a mass of the order of the solar mass or even less. In order to relate the above consider-
ations on the behavior of baryon configurations with an anomalous value of the absolute mass defect to the concept men-
tioned, it is necessary to construct models of superdense prestellar bodies with masses of a much greater order of magni-
tude than the solar mass. This would solve in principle the problem of "superdense" cosmogony. However, the construc-
tion of physical models of continuous superdense prestellar bodies of great mass involves difficulties.

The solution of these difficulties may possibly involve the consideration of nonstationary and nonequilibrium mod-
els. A recent study by I. D. Novikov [12] is of interest in this connection; Novikov postulates that at some initial time,
when the density was infinitely great, not all the matter expanded uniformly, certain regions lagging in their develop-
ment. These regions can be identified with prestellar bodies.

The authors wish to express their appreciation to E. V. Chubaryan, Yu. L. Vartanyan, and D. M. Sedrakyan for
discussion of the article, and to A. G. Piliposyan and A. K. Vardanyan, coworkers at the Computation Center, for set-
ting up and carrying out the numerical computations.
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